Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(3): eadh2579, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38241363

ABSTRACT

Although BRCA1/2 mutations are not commonly found in small cell lung cancer (SCLC), a substantial fraction of SCLC shows clinically relevant response to PARP inhibitors (PARPis). However, the underlying mechanism(s) of PARPi sensitivity in SCLC is poorly understood. We performed quantitative proteomic analyses and identified proteomic changes that signify PARPi responses in SCLC cells. We found that the vulnerability of SCLC to PARPi could be explained by the degradation of lineage-specific oncoproteins (e.g., ASCL1). PARPi-induced activation of the E3 ligase HUWE1 mediated the ubiquitin-proteasome system (UPS)-dependent ASCL1 degradation. Although PARPi induced a general DNA damage response in SCLC cells, this signal generated a cell-specific response in ASCL1 degradation, leading to the identification of HUWE1 expression as a predictive biomarker for PARPi. Combining PARPi with agents targeting these pathways markedly improved therapeutic response in SCLC. The degradation of lineage-specific oncoproteins therefore represents a previously unidentified mechanism for PARPi efficacy in SCLC.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , BRCA1 Protein/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Proteomics , BRCA2 Protein/genetics , Oncogene Proteins , Cell Line, Tumor , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases/genetics
2.
Small Methods ; : e2301300, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054597

ABSTRACT

Cancer poses a significant health challenge, with traditional treatments like surgery, radiotherapy, and chemotherapy often lacking in cell specificity and long-term curative potential. Chimeric antigen receptor T cell (CAR-T) therapy,utilizing genetically engineered T cells to target cancer cells, is a promising alternative. However, its high cost limits widespread application. CAR-T manufacturing process encompasses three stages: cell isolation and activation, transfection, and expansion.While the first and last stages have straightforward, commercially available automation technologies, the transfection stage lags behind. Current automated transfection relies on viral vectors or bulk electroporation, which have drawbacks such as limited cargo capacity and significant cell disturbance. Conversely, micro and nano-tool methods offer higher throughput and cargo flexibility, yet their automation remains underexplored.In this perspective, the progress in micro and nano-engineering tools for CAR-T transfection followed by a discussion to automate them is described. It is anticipated that this work can inspire the community working on micro and nano transfection techniques to examine how their protocols can be automated to align with the growing interest in automating CAR-T manufacturing.

3.
J Immunother Cancer ; 11(11)2023 11.
Article in English | MEDLINE | ID: mdl-37935565

ABSTRACT

BACKGROUND: ADAR1, the major enzyme for RNA editing, has emerged as a tumor-intrinsic key determinant for cancer immunotherapy efficacy through modulating interferon-mediated innate immunity. However, the role of ADAR1 in innate immune cells such as macrophages remains unknown. METHODS: We first analyzed publicly accessible patient-derived single-cell RNA-sequencing and perturbed RNA sequencing data to elucidate the ADAR1 expression and function in macrophages. Subsequently, we evaluated the combined effects of ADAR1 conditional knockout in macrophages and interferon (IFN)-γ treatment on tumor growth in three distinct disease mouse models: LLC for lung cancer, B16-F10 for melanoma, and MC38 for colon cancer. To gain the mechanistic insights, we performed human cytokine arrays to identify differentially secreted cytokines in response to ADAR1 perturbations in THP-1 cells. Furthermore, we examined the effects of ADAR1 loss and IFN-γ treatment on vessel formation through immunohistochemical staining of mouse tumor sections and tube-forming experiments using HUVEC and SVEC4-10 cells. We also assessed the effects on CD8+ T cells using immunofluorescent and immunohistochemical staining and flow cytometry. To explore the translational potential, we examined the consequences of injecting ADAR1-deficient macrophages alongside IFN-γ treatment on tumor growth in LLC-tumor-bearing mice. RESULTS: Our analysis on public data suggests that ADAR1 loss in macrophages promotes antitumor immunity as in cancer cells. Indeed, ADAR1 loss in macrophages combined with IFN-γ treatment results in tumor regression in diverse disease mouse models. Mechanistically, the loss of ADAR1 in macrophages leads to the differential secretion of key cytokines: it inhibits the translation of CCL20, GDF15, IL-18BP, and TIM-3 by activating PKR/EIF2α signaling but increases the secretion of IFN-γ through transcriptional upregulation and interleukin (IL)-18 due to the 5'UTR uORF. Consequently, decreased CCL20 and GDF15 and increased IFN-γ suppress angiogenesis, while decreased IL-18BP and TIM-3 and increased IL-18 induce antitumor immunity by enhancing cytotoxicity of CD8+ T cells. We further demonstrate that combination therapy of injecting ADAR1-deficient macrophages and IFN-γ effectively suppresses tumors in vivo. CONCLUSION: This study provides a comprehensive elucidation of how ADAR1 loss within macrophages contributes to the establishment of an antitumor microenvironment, suggesting the therapeutic potential of targeting ADAR1 beyond the scope of cancer cells.


Subject(s)
Interferon-gamma , Neoplasms , Humans , Animals , Mice , CD8-Positive T-Lymphocytes , Hepatitis A Virus Cellular Receptor 2 , Tumor Microenvironment , Macrophages , Cytokines , Adenosine Deaminase/genetics
4.
Trends Genet ; 39(10): 758-772, 2023 10.
Article in English | MEDLINE | ID: mdl-37658004

ABSTRACT

Cancer treatment strategies have evolved significantly over the years, with chemotherapy, targeted therapy, and immunotherapy as major pillars. Each modality leads to unique treatment outcomes by interacting with the tumor microenvironment (TME), which imposes a fundamental selective pressure on cancer progression. The advent of single-cell profiling technologies has revolutionized our understanding of the intricate and heterogeneous nature of the TME at an unprecedented resolution. This review delves into the commonalities and differential manifestations of how cancer therapies reshape the microenvironment in diverse cancer types. We highlight how groundbreaking immune checkpoint blockade (ICB) strategies alone or in combination with tumor-targeting treatments are endowed with comprehensive mechanistic insights when decoded at the single-cell level, aiming to drive forward future research directions on personalized treatments.


Subject(s)
Neoplasms , Tumor Microenvironment , Technology , Neoplasms/genetics , Neoplasms/therapy
5.
Nat Aging ; 3(8): 965-981, 2023 08.
Article in English | MEDLINE | ID: mdl-37429951

ABSTRACT

Aging is accompanied by homeostatic and functional dysregulation of multiple immune cell subsets. Group 3 innate lymphoid cells (ILC3s) constitute a heterogeneous cell population that plays pivotal roles in intestinal immunity. In this study, we found that ILC3s in aged mice exhibited dysregulated homeostasis and function, leading to bacterial and fungal infection susceptibility. Moreover, our data revealed that the enrichment of the H3K4me3 modification in effector genes of aged gut CCR6+ ILC3s was specifically decreased compared to young mice counterparts. Disruption of Cxxc finger protein 1 (Cxxc1) activity, a key subunit of H3K4 methyltransferase, in ILC3s led to similar aging-related phenotypes. An integrated analysis revealed Kruppel-like factor 4 (Klf4) as a potential Cxxc1 target. Klf4 overexpression partially restored the differentiation and functional defects seen in both aged and Cxxc1-deficient intestinal CCR6+ ILC3s. Therefore, these data suggest that targeting intestinal ILC3s may provide strategies to protect against age-related infections.


Subject(s)
Immunity, Innate , Lymphocytes , Mice , Animals , Immunity, Innate/genetics , Cell Differentiation , Homeostasis/genetics , Trans-Activators/genetics
6.
Sci Immunol ; 8(81): eadc9417, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36930731

ABSTRACT

IgE-mediated anaphylaxis is an acute life-threatening systemic reaction to allergens, including certain foods and venoms. Anaphylaxis is triggered when blood-borne allergens activate IgE-bound perivascular mast cells (MCs) throughout the body, causing an extensive systemic release of MC mediators. Through precipitating vasodilatation and vascular leakage, these mediators are believed to trigger a sharp drop in blood pressure in humans and in core body temperature in animals. We report that the IgE/MC-mediated drop in body temperature in mice associated with anaphylaxis also requires the body's thermoregulatory neural circuit. This circuit is activated when granule-borne chymase from MCs is deposited on proximal TRPV1+ sensory neurons and stimulates them via protease-activated receptor-1. This triggers the activation of the body's thermoregulatory neural network, which rapidly attenuates brown adipose tissue thermogenesis to cause hypothermia. Mice deficient in either chymase or TRPV1 exhibited limited IgE-mediated anaphylaxis, and, in wild-type mice, anaphylaxis could be recapitulated simply by systemically activating TRPV1+ sensory neurons. Thus, in addition to their well-known effects on the vasculature, MC products, especially chymase, promote IgE-mediated anaphylaxis by activating the thermoregulatory neural circuit.


Subject(s)
Anaphylaxis , Hypothermia , Mice , Humans , Animals , Chymases , Mast Cells , Immunoglobulin E , Allergens , Neurons
7.
Gastroenterology ; 165(1): 88-103, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36921674

ABSTRACT

BACKGROUND & AIMS: Gastric cancer (GC) is a major cancer type characterized by high heterogeneity in both tumor cells and the tumor immune microenvironment (TIME). One intractable GC subtype is gastric signet-ring cell carcinoma (GSRCC), which is associated with poor prognosis. However, it remains unclear what the GSRCC TIME characteristics are and how these characteristics may contribute to clinical outcomes. METHODS: We enrolled 32 patients with advanced GC of diverse subtypes and profiled their TIME using an immune-targeted single-cell profiling strategy, including (1) immune-targeted single-cell RNA sequencing (n = 20 patients) and (2) protein expression profiling by a targeted antibody panel for mass cytometry (n = 12 patients). We also generated matched V(D)J (variable, diversity, and joining gene segments) sequencing of T and B cells along CD45+ immunocytes. RESULTS: We found that compared to non-GSRCC, the GSRCC TIME appears to be quiescent, where both CD4+ and CD8+ T cells are difficult to be mobilized, which further impairs the proper functions of B cells. CXCL13, mainly produced by follicular helper T cells, T helper type 17, and exhausted CD8+ T cells, is a central coordinator of this transformation. We show that CXCL13 expression can predict the response to immune checkpoint blockade in GC patients, which may be related to its effects on tertiary lymphoid structures. CONCLUSIONS: Our study provides a comprehensive molecular portrait of immune cell compositions and cell states in advanced GC patients, highlighting adaptive immune irresponsiveness in GSRCC and a mediator role of CXCL13 in TIME. Our targeted single-cell transcriptomic and proteomic profiling represents a powerful approach for TIME-oriented translational research.


Subject(s)
Carcinoma, Signet Ring Cell , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , CD8-Positive T-Lymphocytes , Proteomics , Carcinoma, Signet Ring Cell/genetics , Tumor Microenvironment
8.
Cancer Res ; 83(3): 351-353, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36734079

ABSTRACT

Adenosine-to-inosine (A-to-I) RNA editing is a major source of nucleotide diversification that has significant mechanistic implications in cancer progression and treatment response. However, its activity and prevalence have not yet been systematically determined at a single-cell resolution. Chan and colleagues revealed widespread A-to-I RNA editing events in single cancer cells through an in-depth analysis of a public lung adenocarcinoma single-cell transcriptome dataset. Edits significantly enriched in cancer cells compared to other cell types have the potential to inhibit innate immune response and to predict poor therapeutic response and prognosis in patients treated with targeted therapies. See related article by Chan et al., p. 374.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , RNA , RNA Editing , Adenocarcinoma of Lung/genetics , Immunity, Innate , Prognosis , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Single-Cell Analysis
9.
Cancer Cell ; 40(11): 1324-1340.e8, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36332624

ABSTRACT

Checkpoint inhibition immunotherapy has revolutionized cancer treatment, but many patients show resistance. Here we perform integrative transcriptomic and proteomic analyses on emerging immuno-oncology targets across multiple clinical cohorts of melanoma under anti-PD-1 treatment, on both bulk and single-cell levels. We reveal a surprising role of tumor-intrinsic SIRPA in enhancing antitumor immunity, in contrast to its well-established role as a major inhibitory immune modulator in macrophages. The loss of SIRPA expression is a marker of melanoma dedifferentiation, a key phenotype linked to immunotherapy efficacy. Inhibition of SIRPA in melanoma cells abrogates tumor killing by activated CD8+ T cells in a co-culture system. Mice bearing SIRPA-deficient melanoma tumors show no response to anti-PD-L1 treatment, whereas melanoma-specific SIRPA overexpression significantly enhances immunotherapy response. Mechanistically, SIRPA is regulated by its pseudogene, SIRPAP1. Our results suggest a complicated role of SIRPA in the tumor ecosystem, highlighting cell-type-dependent antagonistic effects of the same target on immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Animals , Mice , B7-H1 Antigen/metabolism , Ecosystem , Immunotherapy/methods , Melanoma/drug therapy , Melanoma/genetics , Proteomics , Humans
10.
PLoS Genet ; 18(3): e1010130, 2022 03.
Article in English | MEDLINE | ID: mdl-35353808

ABSTRACT

SARS-CoV-2 is a positive-sense, single-stranded RNA virus responsible for the COVID-19 pandemic. It remains unclear whether and to what extent the virus in human host cells undergoes RNA editing, a major RNA modification mechanism. Here we perform a robust bioinformatic analysis of metatranscriptomic data from multiple bronchoalveolar lavage fluid samples of COVID-19 patients, revealing an appreciable number of A-to-I RNA editing candidate sites in SARS-CoV-2. We confirm the enrichment of A-to-I RNA editing signals at these candidate sites through evaluating four characteristics specific to RNA editing: the inferred RNA editing sites exhibit (i) stronger ADAR1 binding affinity predicted by a deep-learning model built from ADAR1 CLIP-seq data, (ii) decreased editing levels in ADAR1-inhibited human lung cells, (iii) local clustering patterns, and (iv) higher RNA secondary structure propensity. Our results have critical implications in understanding the evolution of SARS-CoV-2 as well as in COVID-19 research, such as phylogenetic analysis and vaccine development.


Subject(s)
COVID-19 , SARS-CoV-2 , Adenosine Deaminase/metabolism , COVID-19/genetics , Humans , Nucleotides/metabolism , Pandemics , Phylogeny , RNA/metabolism , RNA Editing/genetics , SARS-CoV-2/genetics
11.
Part Fibre Toxicol ; 19(1): 6, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35031062

ABSTRACT

BACKGROUND: Silver nanoparticles (AgNPs) are considered a double-edged sword that demonstrates beneficial and harmful effects depending on their dimensions and surface coating types. However, mechanistic understanding of the size- and coating-dependent effects of AgNPs in vitro and in vivo remains elusive. We adopted an in silico decision tree-based knowledge-discovery-in-databases process to prioritize the factors affecting the toxic potential of AgNPs, which included exposure dose, cell type and AgNP type (i.e., size and surface coating), and exposure time. This approach also contributed to effective knowledge integration between cell-based phenomenological observations and in vitro/in vivo mechanistic explorations. RESULTS: The consolidated cell viability assessment results were used to create a tree model for generalizing cytotoxic behavior of the four AgNP types: SCS, LCS, SAS, and LAS. The model ranked the toxicity-related parameters in the following order of importance: exposure dose > cell type > particle size > exposure time ≥ surface coating. Mechanistically, larger AgNPs appeared to provoke greater levels of autophagy in vitro, which occurred during the earlier phase of both subcytotoxic and cytotoxic exposures. Furthermore, apoptosis rather than necrosis majorly accounted for compromised cell survival over the above dosage range. Intriguingly, exposure to non-cytotoxic doses of AgNPs induced G2/M cell cycle arrest and senescence instead. At the organismal level, SCS following a single intraperitoneal injection was found more toxic to BALB/c mice as compared to SAS. Both particles could be deposited in various target organs (e.g., spleen, liver, and kidneys). Morphological observation, along with serum biochemical and histological analyses, indicated that AgNPs could produce pancreatic toxicity, apart from leading to hepatic inflammation. CONCLUSIONS: Our integrated in vitro, in silico, and in vivo study revealed that AgNPs exerted toxicity in dose-, cell/organ type- and particle type-dependent manners. More importantly, a single injection of lethal-dose AgNPs (i.e., SCS and SAS) could incur severe damage to pancreas and raise blood glucose levels at the early phase of exposure.


Subject(s)
Metal Nanoparticles , Silver , Animals , Cell Survival , Knowledge Discovery , Metal Nanoparticles/toxicity , Mice , Particle Size , Silver/toxicity
12.
Genomics Proteomics Bioinformatics ; 20(1): 147-162, 2022 02.
Article in English | MEDLINE | ID: mdl-34492340

ABSTRACT

Genome- and transcriptome-wide amino acid usage preference across different species is a well-studied phenomenon in molecular evolution, but its characteristics and implication in cancer evolution and therapy remain largely unexplored. Here, we analyzed large-scale transcriptome/proteome profiles, such as The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx), and the Clinical Proteomic Tumor Analysis Consortium (CPTAC), and found that compared to normal tissues, different cancer types showed a convergent pattern toward using biosynthetically low-cost amino acids. Such a pattern can be accurately captured by a single index based on the average biosynthetic energy cost of amino acids, termed energy cost per amino acid (ECPA). With this index, we further compared the trends of amino acid usage and the contributing genes in cancer and tissue development, and revealed their reversed patterns. Finally, focusing on the liver, a tissue with a dramatic increase in ECPA during development, we found that ECPA represents a powerful biomarker that could distinguish liver tumors from normal liver samples consistently across 11 independent patient cohorts and outperforms any index based on single genes. Our study reveals an important principle underlying cancer evolution and suggests the global amino acid usage as a system-level biomarker for cancer diagnosis.


Subject(s)
Amino Acids , Neoplasms , Amino Acids/genetics , Evolution, Molecular , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/metabolism , Proteome/genetics , Proteome/metabolism , Proteomics
13.
Cancer Cell ; 38(6): 829-843.e4, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33157050

ABSTRACT

Perturbation biology is a powerful approach to modeling quantitative cellular behaviors and understanding detailed disease mechanisms. However, large-scale protein response resources of cancer cell lines to perturbations are not available, resulting in a critical knowledge gap. Here we generated and compiled perturbed expression profiles of ∼210 clinically relevant proteins in >12,000 cancer cell line samples in response to ∼170 drug compounds using reverse-phase protein arrays. We show that integrating perturbed protein response signals provides mechanistic insights into drug resistance, increases the predictive power for drug sensitivity, and helps identify effective drug combinations. We build a systematic map of "protein-drug" connectivity and develop a user-friendly data portal for community use. Our study provides a rich resource to investigate the behaviors of cancer cells and the dependencies of treatment responses, thereby enabling a broad range of biomedical applications.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/metabolism , Protein Interaction Maps/drug effects , Proteomics/methods , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Computational Biology , Drug Resistance, Neoplasm , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Protein Array Analysis , User-Computer Interface
14.
Cancer Discov ; 10(9): 1410-1423, 2020 09.
Article in English | MEDLINE | ID: mdl-32513775

ABSTRACT

Identifying master regulators that drive pathologic gene expression is a key challenge in precision oncology. Here, we have developed an analytic framework, named PRADA, that identifies oncogenic RNA-binding proteins through the systematic detection of coordinated changes in their target regulons. Application of this approach to data collected from clinical samples, patient-derived xenografts, and cell line models of colon cancer metastasis revealed the RNA-binding protein RBMS1 as a suppressor of colon cancer progression. We observed that silencing RBMS1 results in increased metastatic capacity in xenograft mouse models, and that restoring its expression blunts metastatic liver colonization. We have found that RBMS1 functions as a posttranscriptional regulator of RNA stability by directly binding its target mRNAs. Together, our findings establish a role for RBMS1 as a previously unknown regulator of RNA stability and as a suppressor of colon cancer metastasis with clinical utility for risk stratification of patients. SIGNIFICANCE: By applying a new analytic approach to transcriptomic data from clinical samples and models of colon cancer progression, we have identified RBMS1 as a suppressor of metastasis and as a post-transcriptional regulator of RNA stability. Notably, RBMS1 silencing and downregulation of its targets are negatively associated with patient survival.See related commentary by Carter, p. 1261.This article is highlighted in the In This Issue feature, p. 1241.


Subject(s)
Colonic Neoplasms/pathology , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/metabolism , Animals , Cell Line, Tumor , Colon/pathology , Colonic Neoplasms/diagnosis , Colonic Neoplasms/genetics , DNA-Binding Proteins/genetics , Gene Knockdown Techniques , Humans , Intestinal Mucosa/pathology , Liver Neoplasms/secondary , Male , Mice , Neoplasm Staging , RNA Stability/genetics , RNA-Binding Proteins/genetics , RNA-Seq , Regulon , Xenograft Model Antitumor Assays
15.
Front Immunol ; 9: 1885, 2018.
Article in English | MEDLINE | ID: mdl-30154795

ABSTRACT

Macrophages have a defensive function against bacteria through phagocytosis and the secretion of cytokines. Histone modifications play an essential role in macrophage functions. Here, we report that Cxxc finger protein 1 (CFP1), a key component of the SETD1 histone methyltransferase complex, promoted the phagocytic and bactericidal activity of GM-CSF-derived macrophages. CFP1-deficient mice were more susceptible to bacterial infection due to the decreased expression of Csf2rα, a subunit of the GM-CSF receptor essential for inflammation and alveolar macrophage development, through the loss of H3K4 modifications in the promoter of the Csf2rα gene. In addition, the lung tissues of CFP1-deficient mice exhibited spontaneous inflammatory symptoms, including both the infiltration of inflammatory cells and the accumulation of surfactant phospholipids and proteins. Furthermore, we showed that Csf2rα and PU.1 can partially rescue the defects in phagocytosis and in the intracellular killing of bacteria. Collectively, our data highlight the importance of CFP1 in the phagocytic and bactericidal activity of macrophages.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Macrophages/immunology , Macrophages/metabolism , Phagocytosis/genetics , Phagocytosis/immunology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Signal Transduction , Trans-Activators/metabolism , Animals , Cytotoxicity, Immunologic , DNA Methylation , Disease Susceptibility , Gene Expression , Histones/metabolism , Macrophages/pathology , Mice , Mice, Knockout , Organ Specificity/immunology , Phagosomes , Phenotype , Promoter Regions, Genetic , Trans-Activators/genetics
16.
Curr Microbiol ; 73(2): 280-6, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27155842

ABSTRACT

For screening bilobalide (BB)-producing endophytic fungi from medicinal plant Ginkgo biloba, a total of 57 fungal isolates were isolated from the internal stem, root, leaf, and bark of the plant G. biloba. Fermentation processes using BB-producing fungi other than G. biloba may become a novel way to produce BB, which is a terpene trilactones exhibiting neuroprotective effects. In this study, a BB-producing endophytic fungal strain GZUYX13 was isolated from the leaves of G. biloba grown in the campus of Guizhou University, Guiyang city, Guizhou province, China. The strain produced BB when grown in potato dextrose liquid medium. The amount of BB produced by this endophytic fungus was quantified to be 106 µg/L via high-performance liquid chromatography (HPLC), substantially lower than that produced by the host tissue. The fungal BB which was analyzed by thin layer chromatography (TLC) and HPLC was proven to be identical to authentic BB. The strain GZUYX13 was identified as Pestalotiopsis uvicola via morphology and ITS rDNA phylogeny. To the best of our knowledge, this is the first report concerning the isolation and identification of endophytic BB-producing Pestalotiopsis spp. from the host plant, which further proved that endophytic fungi have the potential to produce bioactive compounds.


Subject(s)
Cyclopentanes/metabolism , Endophytes/metabolism , Furans/metabolism , Ginkgo biloba/microbiology , Ginkgolides/metabolism , Plants, Medicinal/microbiology , Xylariales/metabolism , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Plant Leaves/microbiology , Xylariales/classification , Xylariales/genetics , Xylariales/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...